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In professional football, talented players are the clubs’ most valuable resources. Player 
registrations give clubs the exclusive rights to a player’s services and these
registrations can be exchanged (purchased or loaned) on the international market. In 
2021, more than 18,000 international permanent transfers were made with revenues of
almost US$ 5 billion (FIFA, 2022).
Previous studies commonly rely on simple linear regressions and explore a rather
limited set of variables for comparably small samples (Carmichael & Thomas, 1993; McHale & 

Holmes, 2022).

§ We showcase how moving beyond linearity and modeling quantiles can be revealing for both
research and practice.

§ The models trained with before-COVID-19 data significantly underestimate the actual transfer
fees paid during COVID-19 particularly for high- and medium-priced players, thus questioning
any cooling-off effect of the transfer market. 

Methods
Sample

3/12

Inclusion criteria 
• Transfers with fee (no free, loan transfers)
• Transfers within the European Big five 

leagues (Germany: Bundesliga, England: EPL, 
France: Ligue 1, Italy: Serie A, and Spain: La Liga)

• Between the seasons 08/09 and 21/22 (until 
Feb 02, 2022). 

Web scraping with Python

• Crowd-sourcing community
• Reliable database (Herm et al., 2014)

• Widely used in sport management (Feuillet et al., 2020)

Data processing
• Missing information: imputed manually
• Duplicates: removed (e.g., same transfer while either 

as incoming or outgoing in two leagues). 

Full data set (n=7918 transfers)

Five sets of variables
• Player characteristics
• Player performance (injury)
• Selling-club characteristics
• Buying-club characteristics
• Time effects

Final models (n=3512 transfers)
• Since season 2015/16
• With contract length data

Robustness checks
• Models on full set (n=7918)
• Models on full set from 2015/16 on 

(n=4149)
• Predictions for each of the big five 

leagues
• Trimming 1% and 99% of transfer fees

Results
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Player characteristics and performance
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European Big Five Leagues: Predicted vs. Actual Transfer Fees During COVID-19 

Moving Beyond Linearity: Quantile Additive Non-linear Effects of Predictors

Conclusions

Sample                                                         Variables

Player characteristics
§ Age
§ Height
§ Nationality: Europe, Asia, Africa, South 

America, North America
§ Position: Defender, goalkeeper, 

attacker, midfielder
§ Remaining contract length (days)

Time effects
§ Season 08/09 – season 21/22
§ Season 15/16 – season 21/22
§ Transfer window (summer, winter)

Selling & buying club 
characteristics
§ Arrivals of players 
§ Departures of players 
§ Transfer income
§ Transfer expenditure
§ Spectators
§ UEFA club coefficients
§ League ranking
§ Leagues (13 types)

Note. All variables refer to previous season 
or player career history

Player performance
§ UEFA Champions League
§ Appearances
§ Substitution on
§ Substitution off
§ Minutes played
§ Points (/1000 MP)
§ Goals (/1000 MP)
§ Assists goal (/1000 MP)
§ Yellow cards (/1000 MP)
§ Player injury history: (Injury days/injury 

frequency)/age

Modelling
Logged transfer fee = 

β0 + β1*(player characteristics) + β2*(player performance) +  
β3*(selling-club characteristics) + β4*(buying-club  
characteristics) + β5*(time effects)  + ε

Supervised Machine Learning Framework
§ Go beyond linear functional forms of OLS (machine learning; James et al., 2013)
§ Random data splitting (n = 3,512): training (n = 1,903), testing (n = 816), during COVID-19 (n = 793)
§ 10-fold cross-validation
§ Evaluating model performance: testing R2 and RMSE (Root Mean Square Error)

Research Questions

Aims

Our study aims to extend findings from previous efforts exploring the factors associated
with transfer fees to and from all big five league clubs in European football (men) by
building upon advances in machine learning, which allow to depart from linear 
functional forms. Moreover, we provide a simple test of whether the transfer market has
changed since the beginning of the COVID-19 pandemic.

§ What are the key determinants of transfer fees? 

§ How can we make comparably accurate predictions for such fees? 

§ Did the COVID-19 pandemic affect the relevance of common predictors and the
accuracy of predictions based on pre-COVID-19 evidence?
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